Simultaneous Optimization of Feature Weighting and Instance Selection in Case-based Reasoning Systems Using Genetic Algorithms

نویسندگان

  • Hyunchul Ahn
  • Kyoung-jae Kim
  • Ingoo Han
چکیده

Case-based reasoning (CBR) often shows significant promise for improving effectiveness of complex and unstructured decision making. Consequently, it has been applied to various problem-solving areas including manufacturing, finance and marketing. However, the design of appropriate case retrieval mechanisms to improve the performance of CBR is still a challenging issue. Most of previous studies to improve the effectiveness for CBR have focused on the selection of appropriate instances and the optimization of case features and their weights. However, these approaches have been applied independently. Here we encode the feature weighting and instance selection within the same genetic algorithm (GA) and suggest simultaneous optimization model of feature weighting and instance selection. This study applies the new model to bankruptcy prediction. Experimental results show that simultaneously optimized CBR outperforms other CBR techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

A Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders

Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...

متن کامل

Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach

One of the most important research issues in finance is building effective corporate bankruptcy prediction models because they are essential for the risk management of financial institutions. Researchers have applied various data-driven approaches to enhance prediction performance including statistical and artificial intelligence techniques, and many of them have been proved to be useful. Case-...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004